A Covariance Matrix Adaptation Evolution Strategy for Direct Policy Search in Reproducing Kernel Hilbert Space

نویسندگان

  • Ngo Anh Vien
  • Viet-Hung Dang
  • TaeChoong Chung
چکیده

The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivativefree optimization algorithm. It optimizes a black-box objective function over a well defined parameter space. In some problems, such parameter spaces are defined using function approximation in which feature functions are manually defined. Therefore, the performance of those techniques strongly depends on the quality of chosen features. Hence, enabling CMA-ES to optimize on a more complex and general function class of the objective has long been desired. Specifically, we consider modeling the input space for black-box optimization in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimization problem whose domain is a function space that enables us to optimize in a very rich function class. In addition, we propose CMA-ES-RKHS, a generalized CMA-ES framework, that performs black-box functional optimization in RKHS. A search distribution, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive representation of the mean function and the covariance operator is achieved by resorting to sparsification. CMA-ES-RKHS is evaluated on two simple functional optimization problems and two bench-mark reinforcement learning (RL) domains. For an application in RL, we model policies for MDPs in RKHS and transform a cumulative return objective as a functional of RKHS policies, which can be optimized via CMA-ES-RKHS. This formulation results in a black-box functional policy search framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method

The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017